
Counting K-mers on distributed memory efficiently with
sorting and task-based parallelism

Yifan Li
Tsinghua University
May 20th, 2024

*Work done during exchange at Cornell University, with Prof. Giulia Guidi

1

Table of Contents

1. Introduction

2. Methodologies
• The Common 𝑘-mer Counting Pipeline
• Sorting Based Approach
• Supermer Strategy
• Task Abstraction Layer

3. Performance Results
4. Conclusion

2

𝐾-mer Counting

A 𝑘-mer is a substring of fixed length 𝑘 extracted from DNA sequences.

𝑘-mer counting involves
• Counting the frequency of 𝑘-mers in DNA sequences.
• Collecting the distribution of 𝑘-mers, or 𝑘-mers within a certain range.

Read: CATCATCA
5-mers: CATCA

ATCAT
TCATC
CATCA

Example: 5-mers of a length-8 DNA sequence

3

Result:
(CATCA, 2)
(ATCAT, 1)
(TCATC, 1)

Example: Counting results of the sequence

Some uses of 𝑘-mer Counting

• Seed and Extend for genome assembly[1]

• Protein similarity search[2]

• 𝑘-mers as features of datasets for learning and inference purposes[3]

Read1:
Read2:

Identical k-mer (Possible alignment area)

[1] G. Guidi et al., Bella: Berkeley efficient long-read to long-read aligner and overlapper.
[2] O. Selvitopi et al., Extreme-Scale Many-against-Many Protein Similarity Search
[3] S. Dhibar et al., Accurate prediction of antifreeze protein from sequences through natural language text processing and interpretable machine learning approaches.

4

Counting 𝑘-mers on a large scale

Counting 𝑘-mers for very large datasets are required due to
• high-throughput sequencing technologies
• applications like pangenome graph building

However, counting 𝑘-mers on a single machine is RAM consuming and compute intensive.
• The option to filter the input data is not available.
• It is impossible to treat the 𝑘-mer counting in an embarrassingly parallel manner.
• Utilizing disks will result in severe speed down.

Therefore, counting 𝑘-mers in distributed memory is (hard but) necessary!

5

Background
What is MPI?
• Standard for efficient communication between processes.
• The de facto standard for message passing in parallel computing.
What is OpenMP?
• A widely-used API that supports shared memory multiprocessing programming.
Where do we run the programs?
• Anywhere, but faster on supercomputers / clusters with fast interconnect.

6

Machine 1 Machine 2
MPI Communication
via fast interconnect

MPI Process 2MPI Process 1

OMP Thread OMP Thread OMP Thread OMP Thread

Cluster

Preview

• Use sort algorithms instead of hash tables for distributed memory 𝑘-mer counting.
• Adopt and improve the Supermer strategy to reduce communication volume.
• Introduce a task abstraction layer for better performance, pipeline integration and load balance.
• Process a human 52x dataset in just 6 seconds using 64 nodes, compared to the 410 seconds with

the state-of-the-art single-node k-mer counter.

7

Table of Contents

1. Introduction
2. Methodologies

• The Common 𝑘-mer Counting Pipeline
• Sorting Based Approach
• Supermer Strategy
• Task Abstraction Layer

3. Performance Results
4. Conclusion

8

Previous work

The common 𝑘-mer counting pipeline on distributed memory.

[1] Georganas et al., K. 1114 Parallel de bruijn graph construction and traversal for de novo genome assembly. 9

Previous work: The 𝑘-mer counting pipeline

Stage 1
1. The processes independently read and parse batches of input sequences.
2. Processes use the same hash function and mod operation to compute an ID for each 𝑘-mer,

dividing the local 𝑘-mer set into groups based on the ID.

10

Previous work: The 𝑘-mer counting pipeline

Stage 2
1. 𝑘-mers are distributed in groups to different target processes based on their respective IDs.
2. (Possibly a 2-Pass approach for Bloom Filters)
Stage 3
1. The 𝑘-mers are inserted into the hash table.
2. The hash table serves as a counter.

11

Table of Contents

1. Introduction
2. Methodologies

• The Common 𝑘-mer Counting Pipeline
• Sorting Based Approach
• Supermer Strategy
• Task Abstraction Layer

3. Performance Results
4. Conclusion

12

Methodologies

13

Time & Memory consuming

Methodologies

Sorting based approach
Improves Stage 3

• 𝑘-mers remain in the receive buffer.
• A multithreaded sort is performed to reorder the 𝑘-mer instances according to the value.
• A linear scan is then performed to count the frequency of 𝑘-mers.

Buffer: TGA TCG TCG TGG TCG
Sorted Buffer: TCG TCG TCG TGG TGA
Scanning results: (TCG, 3) (TGG, 1) (TGA, 1)

Example: Sort based approach for stage 3

14

Methodologies: Sorting Based Approach

Sort Algorithm Selection
• Radix Sort’s theoretical complexity is O(𝑛 · 𝑑), which makes it efficient for large input data.
(𝑛: the number of items to be sorted, 𝑑: a constant dependent on the length 𝑘)

• Radix sort is particularly well suited for multicore parallelization.

• PARADIS is a parallel in-place radix sort algorithm known for its low memory footprint. [1]

• RADULS, another parallel radix sort algorithm, is cache-friendly optimized for modern
hardware, but requires more physical memory. [2]

[1] Cho, M., Brand, D., Bordawekar, R., Finkler, U., Kulandaisamy, V., and Puri, R. Paradis: an efficient parallel algorithm for in-place radix sort.
[2] Kokot, M., Deorowicz, S., and Debudaj-Grabysz, A. Sorting data on ultra-large scale with raduls: New incarnation of radix sort.

15

Methodologies: Sorting Based Approach

Advantages over traditional Hash table based approach
• Cache-friendly and fast
• Hardly requires any additional space when memory resource is limited
• Facilitates multithreading scaling

16

Table of Contents

1. Introduction
2. Methodologies

• The Common 𝑘-mer Counting Pipeline
• Sorting Based Approach
• Supermer Strategy
• Task Abstraction Layer

3. Performance Results
4. Conclusion

17

Methodologies

18

New Bottleneck

Methodologies

The Original Supermer Strategy
Improves stage 2
• Reduces communication volume

Optimized Supermer Strategy
Improves stage 1, 2
• Using Hash function as scoring function
• An efficient method of finding minimizers

19

Methodologies: Supermer Strategy

The Original Supermer Strategy
• A 𝑠𝑢𝑝𝑒𝑟𝑚𝑒𝑟, or super-𝑘-mer, is a contiguous sequence of DNA bases.
• 𝑘-mers extracted from a supermer should have the same target process.
• The overlapping subsequence of these 𝑘-mers is not exchanged repeatedly.

Read: AATCGATA
5-mers: AATCG Target: 1

ATCGA Target: 1
TCGAT Target: 1
CGATA Target: 2

Supermers: AATCGAT Target: 1 Length: 7
CGATA Target: 2 Length: 5

Example: 𝑆𝑢𝑝𝑒𝑟𝑚𝑒𝑟𝑠 of a DNA sequence

[1] Li, Y., et al. Mspkmercounter: a fast and memory efficient approach for k-mercounting. 20

Methodologies: Supermer Strategy

The Original Supermer Strategy
• However, the naïve way of assigning 𝑘-mers to processes leads to a low probability that

adjacent 𝑘-mers belong to the same process.
• 𝑀-mers and minimizers are proposed to remedy the issue.

Read: AATCGATA
5-mers: AATCG Target: 1

ATCGA Target: 1
TCGAT Target: 1
CGATA Target: 2

Supermers: AATCGAT Target: 1 Length: 7
CGATA Target: 2 Length: 5

Example: 𝑆𝑢𝑝𝑒𝑟𝑚𝑒𝑟𝑠 of a DNA sequence

Unlikely!

21

Methodologies: Supermer Strategy

The Original Supermer Strategy
• An 𝑚-mer is defined as a length 𝑚 subsequence of DNA bases (𝑚 < 𝑘) .
• A minimizer is the 𝑚-mer of a 𝑘-mer with the lowest score for a function 𝑓 .
• The target process of the 𝑘-mer is determined by the hash value of the minimizer.

Read: AATCGATA (k=5, m=3)
5-mers: AATCG minimizer: TCG target: 1

ATCGA TCG target: 1
TCGAT TCG target: 1
CGATA CGA target: 3

Supermers: AATCGAT Target: 1 Length: 7
CGATA Target: 2 Length: 5

Example: 𝑆𝑢𝑝𝑒𝑟𝑚𝑒𝑟𝑠 and 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑟𝑠 of a DNA sequence, simple lexical order T<C<G<A for scoring function
22

Methodologies: Supermer Strategy

Optimized Supermer Strategy
Using Hash function as scoring function
• Guarantees randomness and ensures load balance (to some extent)
• Does not cause much overhead

23

Methodologies: Supermer Strategy
Optimized Supermer Strategy
Efficient method of finding minimizers

DEDUKT[1]

MSPKmerCounter[2]

[1] Nisa, I., Pandey, P., Ellis, M., Oliker, L., Buluç, A., and Yelick, K. Distributed-memory k-mer counting on gpus.
[2] Li, Y., et al. Mspkmercounter: a fast and memory efficient approach for k-mercounting.

24

𝑛 ∗ 𝑘 calculations

Expected 2𝑛 calculations

Methodologies: Optimized Supermer Strategy

Finding minimizers for consecutive 𝒌-mers is actually a sliding window problem.

Read: TCTAGCCA (k=5, m=3)
5-mer: TCTAG Deque: [TCT, TAG] Minimizer: TCT

CTAGC Deque: [TCT, TAG, AGC] Minimizer: TAG
TAGCC Deque: [TAG, AGC, GCC] Minimizer: TAG
AGCCA Deque: [TAG, GCC, CCA] Minimizer: CCA

Example: Finding minimizers of consecutive 𝑘-mers with a deque

25

Methodologies: Optimized Supermer Strategy

Finding minimizers for consecutive 𝒌-mers is actually a sliding window problem.
• A deque is kept. The elements in the deque are ordered monotonically, i.e. the 𝑚-mers in the

deque have increasing scores.

Read: TCTAGCCA (k=5, m=3)
5-mer: TCTAG Deque: [TCT, TAG] Minimizer: TCT

CTAGC Deque: [TCT, TAG, AGC] Minimizer: TAG
TAGCC Deque: [TAG, AGC, GCC] Minimizer: TAG
AGCCA Deque: [TAG, GCC, CCA] Minimizer: CCA

Example: Finding minimizers of consecutive 𝑘-mers with a deque

26

Methodologies: Optimized Supermer Strategy

Finding minimizers for consecutive 𝒌-mers is actually a sliding window problem.
• A deque is kept. The elements in the deque are ordered monotonically, i.e. the 𝑚-mers in the

deque have increasing scores.
• Rule 1: To remove an expiring 𝑚-mer in the deque, we check the front part of the deque. If the

front element is the expiring 𝑚-mer, it is removed; otherwise nothing is done.

Read: TCTAGCCA (k=5, m=3)
5-mer: TCTAG Deque: [TCT, TAG] Minimizer: TCT

CTAGC Deque: [TCT, TAG, AGC] Minimizer: TAG
TAGCC Deque: [TAG, AGC, GCC] Minimizer: TAG
AGCCA Deque: [TAG, GCC, CCA] Minimizer: CCA

Example: Finding minimizers of consecutive 𝑘-mers with a deque

27

Methodologies: Optimized Supermer Strategy

Finding minimizers for consecutive 𝒌-mers is actually a sliding window problem.
• A deque is kept. The elements in the deque are ordered monotonically, i.e. the 𝑚-mers in the

deque have increasing scores.
• Rule 1: To remove an expiring 𝑚-mer in the deque, we check the front part of the deque. If the

front element is the expiring 𝑚-mer, it is removed; otherwise nothing is done.
• Rule 2: To insert a 𝑚-mer, we remove elements at the end of the deque until the score of the end

element is lower than that of the new 𝑚-mer or the deque is empty, and then insert the new 𝑚-
mer at the end.

Read: TCTAGCCA (k=5, m=3)
5-mer: TCTAG Deque: [TCT, TAG] Minimizer: TCT

CTAGC Deque: [TCT, TAG, AGC] Minimizer: TAG
TAGCC Deque: [TAG, AGC, GCC] Minimizer: TAG
AGCCA Deque: [TAG, GCC, CCA] Minimizer: CCA

Example: Finding minimizers of consecutive 𝑘-mers with a deque

28

Methodologies

29

Table of Contents

1. Introduction
2. Methodologies

• The Common 𝑘-mer Counting Pipeline
• Sorting Based Approach
• Supermer Strategy
• Task Abstraction Layer

3. Performance Results
4. Conclusion

30

Methodologies

Task Abstraction Layer
Improves stage 2 and 3

• Problem 1: Both RADULS and PARADIS exhibit poor weak scaling
performance once the number of threads exceeds 16.

• Problem 2: Modern CPUs have many cores and more than 1 non-
uniform memory access (NUMA) domains.

31

Methodologies

Task Abstraction Layer
Improves stage 2 and 3

• Problem 3: Some bioinformatics pipelines have preference
for process-level or thread-level parallelization settings.

• Problem 4: Some datasets are imbalanced.

32

Methodologies: Task Abstraction Layer

• Distributed memory 𝑘-mer counters usually partition 𝑘-mers into 𝑛𝑢𝑚_𝑝𝑟𝑜𝑐 batches.
• We partition the 𝑘-mers into 𝑠 batches(tasks), 𝒔 > 𝒌.

• In the third stage, available computing resources of a process are divided among several workers.
• Each worker is assigned some computing resources and several tasks.

33

Methodologies: Task Abstraction Layer

Benefits:
• We can utilize the numerous physical cores of modern CPUs.
• Limiting processes per node and threads per process reduces scheduling overhead.
• The layer opens up more opportunities for load balancing.

34

Methodologies: Task Abstraction Layer

Load Balance Strategy
Load imbalance is a nightmare for bulk-synchronous parallel programming model like MPI.

We proposed a load balance strategy based on the task abstraction layer:
• The root process retrieves data about the size of each task before assigning it to a target process.
• The goal is to minimize the largest sum of task sizes for a single process.

35

Methodologies: Task Abstraction Layer

Load Balance Strategy
However, there’s still severe load imbalance issue for some datasets.
For example, the human genome contains numerous repeats of (𝐴𝐴𝑇𝐺𝐺)𝑛

Both Supermer (including scoring function selection) and Load Balance Strategy are unable solve
this problem.

Read: TGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAATGGAA

Example: When counting 7-mers, at least 10 k-mers from the sequence will be assigned the same id.

36

Methodologies: Task Abstraction Layer

Advanced Load Balance Strategy
• We use statistics of the task to determine if it includes heavy hitters.
• For heavy hitter tasks, we transform them locally before communication happens.

Original Task: [AATGGA, AATGG, AATGG, AATGG, GAATGG]
Transformed Task: [(AATGG, 4), (ATGGA, 1), (GAATG, 1)]

Example: Heavy hitter task transformed
37

Methodologies: Task Abstraction Layer

Advanced Load Balance Strategy
• We use statistics of the task to determine if it includes heavy hitters.
• For heavy hitter tasks, we transform them locally before communication happens.
Reduces load imbalance for both stage 2 and stage 3

38

Overview • Supermer and Optimized Supermer strategy
• Sorting Based Approach à Task Abstraction Layer à Advanced load balance

39

Table of Contents

1. Introduction
2. Methodologies

• The Common 𝑘-mer Counting Pipeline
• Sorting Based Approach
• Supermer Strategy
• Task Abstraction Layer

3. Performance Results

4. Conclusion

40

Results

• Time & Memory Comparison with kmerind, H. sapiens 10x, 31GB FASTA, IO Excluded
• On NERSC’s Perlmutter CPU Node (2 EPYC 7763, 512 GB RAM, 1NIC per Node)

41
(Up to 2x faster and reduces RAM usage by 70%)

Results

• Time & Memory Comparison with kmerind, H. sapiens 52x, 156GB FASTA, IO Excluded
• On NERSC’s Perlmutter CPU Node (2 EPYC 7763, 512 GB RAM, 1NIC per Node)

42

(2x faster on 64 nodes)

Results
• Single Node Comparison with KMC𝟑, IO Excluded
• On NERSC’s Perlmutter CPU Node (2 EPYC 7763, 512 GB RAM, 1NIC per Node)

• Counting H. Sapiens 52x with KMC3 needs 412s;
Our counter finishes the task on 64 nodes in 5.9s, which is a 𝟕𝟎× speedup.

43

(faster on a single node)

Results
• Strong Scaling, H. sapiens 10x, 31GB FASTA, IO Excluded
• On NERSC’s Perlmutter CPU Node (2 EPYC 7763, 512 GB RAM, 1NIC per Node)

44

Parallel efficiency = !"#$_&'($
!"#$

")*+$_&'($
)*+$

Here 𝑛𝑜𝑑𝑒_𝑏𝑎𝑠𝑒 = 1 and 𝑡𝑖𝑚𝑒_𝑏𝑎𝑠𝑒 = 48𝑠 .

Conclusion

• Proposed a highly efficient 𝑘-mer counter, up to 2× faster than existing software
• Reduced memory usage by more than 30%.
• Improved speed, memory consumption and flexibility benefits many bioinformatics pipelines.
• Enables 𝑘-mer counting to be applied in a wider range of scenarios.
• Methods such as the task abstraction layer and load balancing strategy can be applied to other

related applications.

45

Links and information

• Github Repo: https://github.com/CornellHPC/HySortK Or Scan QrCode

• Email: yf-li21@mails.tsinghua.edu.cn

• The paper is currently under review. If you’re interested in it, please send me an email. I’ll send
you a copy as soon as it’s available.

46

https://github.com/CornellHPC/HySortK
mailto:yf-li21@mails.tsinghua.edu.cn

